

TIME-OF-FLIGHT INSTRUMENTS (TOF)

- Principle: smaller ions fly faster!
- typically a **pulse** mass analyzer, because first the ions are accelerated by a very short pulse at the entrance to the analyzer tube, and then the time during which the ions "fly" to the detector is precisely measured, according to which their m/z is determined;
- Mass range m/z is not limited (theoretically);
- Physical destcription:
- upon ionization, the all ions gain approximately the same energy and are accelerated by an electric potential V;
- $E_k = 1/2 \text{ m.v}^2 = z.V$
- The time of flight: t = I/v
- where \mathbf{I} is the length of the tube (= flight path) and \mathbf{v} is the velocity of the ion
- $m/z = 2.V.t^2/l^2$

AT WHAT SPEED WILL THE FULLERENE ${\rm C_{60}}^+$ MOLECULAR ION MOVE? ACCELERATING VOLTAGE IS 19.5 KV.

$$E_k = 1 / 2 mv^2 = zV$$

$$V = \sqrt{\frac{2 zV}{m}}$$

$$v = \sqrt{\frac{2 \times 1,6022 \times 10^{-19} C \times 19500V}{60 \times 12 \times 1,66 \times 10^{-27} kg}} = 72,294 ms^{-1}$$

3

TIME-OF-FLIGHT (TOF)

• The advantages:

- i) the m/z range is unlimited;
- ullet ii) a complete mass spectrum is obtained within several μs ;
- iii) improved transmission, with high sensitivity;
- iv) construction is simple and inexpensive;
- v) accurate mass measurements and tandem MS experiments;

-

REFLECTOR TIME-OF-FLIGHT ANALYZER

An ion mirror that focuses ions of different kinetic energies in time. It serves to balance the different kinetic energies for ions with the same m/z value.

FOURIER TRANSFORM ION CYCLOTRON RESONANCE (FT-ICR)

- FT-ICR mass spectrometers offer ultrahigh resolving power RP = $10^6 10^7$;
- highest mass accuracy $\Delta m = 10^{-4} \, \text{u}$;
- attomol detection limits (with nanoESI or MALDI sources);
- high mass range and MSn capabilities;
- all ions are detected at the same time, easy polarity change;

(FT-ICR)

- principle:
- the ion begins to move in a strong magnetic field along a cycloidal trajectory with a cyclotron frequency $\omega_c = Bz \ / \ m$;
- mass-selective excitation, so-called **resonant excitation**, is achieved by applying a transverse electric field alternating at the cyclotron frequency fc ($\omega_c = 2\pi f_c$) to accelerate the ions;
- magnetic field 7-13 Tesla; low pressure of 10⁻¹¹ mBar;
- each m/z has charakteristick ω_c ;
- FT is a mathematical operation that transforms one complex-valued function

Movement of an ion in a magnetic field of very high intensity (electric field excitation) $\omega = \frac{zeB}{m} \quad [\text{rad.s}^{-1}] \qquad \qquad f = \frac{zeB}{2\pi m} \quad \text{frekvence [s$^{-1}]}$ Excitation electrodes

AC source

DETECTORS

- 1/ Photographic plate intensity is estimated based on exposure shade;
- 2/ Faraday detector The simplest ion detector, an ion beam strikes the inner metal surface and is neutralized by electrons. The small electron current is amplified and converted into a voltage. The electron current is proportional to the number of ions striking the surface. (very accurate, used for precise isotopic measurements);
- 3/ Electron Multiplier energetic particles hit the surface of a metal, secondary electrons are emitted; the most common, amplification up to 10^7 ;
- 4/Photo Multiplier- longer service life-time
- - 1/ a 2/ the signal is measured directly 3/ a 4/ the signal is multiplied;

VACUUM TECHNOLOGY

- the mass analyzer always works under high vacuum, the vacuum value varies according to the type of analyzer;
- the ion source also usually works under high vacuum, the exception being ionization techniques working under atmospheric pressure (API);
- to obtain such high vacuum, two or even multi-stage pumping with very powerful vacuum pumps is usually needed;
- 1. pumping stage rotary pumps (power 80 l/s);
- 2. pumping stage turbomolecular or diffusion pumps (250 2000 l/s);
- why is a vacuum needed? ions must have a sufficiently long mean path and
 collisions with neutral atoms must not occur; during electron ionization, in the
 presence of atmospheric oxygen, the resistance wire producing electrons
 would burn out.

27

PRESSURE RANGES

Vacuum Quality	Unit Symbol	Pascal Pa	bar bar	millibar mbar	Torr Torr	Millitorr mTorr	poun squar
Rough Vacuum	Р	1.0E+05	1,000	1000,000	751,9	751880	
	· ·	1,0E+03	0,100	100,000	75,2	75188	
	e e	1,0E+03	0,010	10,000	7,5	7519	
Medium Vacuum	s	1.0E+02	0,001	1,000	0,752	752	
	s	1,0E+01	1,0E-04	0,100	0,075	75,19	1,4
	u	1,0E+00	1,0E-05	0,010	7,5E-03	7,52	1,4
High Vacuum	r	1,0E-01	1,0E-06	1,0E-03	7,5E-04	0,752	1,4
	е	1,0E-02	1,0E-07	1,0E-04	7,5E-05	0,075	1,4
		1,0E-03	1,0E-08	1,0E-05	7,5E-06	7,5E-03	1,4
		1,0E-04	1,0E-09	1,0E-06	7,5E-07	7,5E-04	1,4
Ultrahigh Vacuum		1,0E-05	1,0E-10	1,0E-07	7,5E-08	7,5E-05	1,4
		1,0E-06	1,0E-11	1,0E-08	7,5E-09	7,5E-06	1,4
		1,0E-07	1,0E-12	1,0E-09	7,5E-10	7,5E-07	1,4
		1,0E-08	1,0E-13	1,0E-10	7,5E-11	7,5E-08	1,4
		1,0E-09	1,0E-14	1,0E-11	7,5E-12	7,52E-09	1,4

At high speeds and an increase in frictional heat - magnetic bearings. The pump can be cooled and the rotor is stabilized.

Hall sensors - detection of rotational position.

A turbomolecular pump can only work if the molecules hit by the moving vanes reach the stationary vanes before colliding with other molecules.

Spacing between sets of vanes 1 mm

mean free path - inversely proportional to pressure At a pressure of about 10 Pa, the mean free path is about 0.7 mm and the pump starts to suck.

Achievable pressure up to 10-8 Pa

