

AMBIENT IONIZATION TECHNIQUES

- ionization techniques working outside the mass spectrometer;
- objects of unusual shape and size can also be analyzed;
- enable direct sample analysis with minimal sample preparation;
- are usable as an ion source for most mass analyzers;
- they are soft and very gentle ionization techniques;
- they use the principles of common ionization techniques, but in an open space - ESI, CI, photoionization, etc.
- · can also be used for mass spectrometric imaging;

AP-TD/SI atmospheric pressure thermal desorption-secondary ionization BADCI beta electron-assisted direct chemical ionization DAPCI desorption atmospheric pressure chemical ionization DAPPI desorption atmospheric pressure photo-ionization DART DBDI dielectric barrier discharge ionization DCBI desorption corona beam ionization DEMI desorption electrospray/metastable-induced ionization desorption electrospray ionization DESI DICE desorption ionization by charge exchange EASI easy ambient sonic-spray ionization ELDI electrospray-assisted laser desorption ionization FAPA flowing atmospheric pressure afterglow IR-LAMICI infrared laser ablation metastable-induced chemical ionization LADESI laser-assisted desorption electrospray ionization LAESI laser ablation electrospray ionization mass spectrometry LDESI laser desorption electrospray ionization LESA liquid extraction surface analysis LIAD-ESI laser-induced acoustic desorption-electrospray ionization LMJ-SSP liquid micro junction-surface sampling probe LTP low-temperature plasma probe MALDESI matrix-assisted laser desorption electrospray ionization ND-EESI neutral desorption extractive electrospray ionization PESI probe electrospray ionization RADIO radio-frequency acoustic desorption and ionization REIMS rapid evaporative ionization mass spectrometry switched ferroelectric plasma ionizer SwiFerr

3

AMBIENT IONIZATION TECHNIQUES (AI)

- lonization outside the mass spectrometer does not require sample pretreatment;
- rapid analysis from the surface of a solid sample at atmospheric pressure;
- 30 ambient ionization techniques (modifications);

Advantages:

- simplicity of analysis;
- high sample throughput;
- wide application area (analysis of explosives, drugs, forensic analysis...);
- the possibility of displaying the distribution of substances on the surface;
- combination with planar separation techniques (TLC);

AMBIENT IONIZATION TECHNIQUES (AI)

DESI (desorption electrospray ionization)

- extraction of the analyte from the surface using charged droplets
- Entry of secondary droplets ("droplet pick-up");
- lons are created similarly to ESI, they create [M+H]+, [M+Na]+, [M-H]-, [M+CI]-

Optimization:

pressure and nebulizer geometry, voltage, flow, additives, surface material (glass, paper, polymer...)

5

AMBIENT IONIZATION TECHNIQUES (AI)

DART- (direct analysis in real time)

- The sample is placed in the space before the MS;
- gas (He, N, Ne) is supplied to the ion source;
- discharge chamber glowing discharge;
- ionization and formation of uncharged metastable gas particles;
- deflection of charged particles;

Only uncharged metastable particles interact – radicals;

Alternatively, interaction with H₂O and subsequent protonation;

AMBIENT IONIZATION TECHNIQUES (AI)

DAPPI – (desorption atmospheric pressure photo-ionization)

A heated aerosol consisting of a solvent and a nebulizing gas is directed at the examined surface.

Desorption of the analytes will occur, which are subsequently photoionized by a UV lamp in the gas phase.

_

MATRIX-ASSISTED LASER DESOPTION/IONIZATION (MALDI)

- evolved from LD (Anal. Chem 1978, 50, 985), for the analysis of biopolymers;
- the stormy development of biochemistry in recent years (Nobel Prize in Chemistry 2002 for the invention of ESI and MALDI);
- (Rapid Commun. Mass Spectrom. 1988, 2, 151)
- sample mixed with matrix, then evaporated; a short laser pulse is absorbed by the matrix, the absorbed energy is transferred and ionization and desorption of sample ions occur;
- pulse ionization technique basically in connection with a TOF analyzer;
- nitrogen UV lasers (3 ns pulse, UV 337 nm), IR lasers (CO2) are more expensive and less used (pulse 6-200ns);
- choice of matrix: aromatic carboxylic acids (dihydroxybenzoic acid, chlorsalicylic acid, cinnamic acid, etc.);
- delayed extraction extracts ions up to about 10 100 ns after the application of the laser pulse, which equalizes their energies and thereby increases the resolution;
- · biomolecules up to hundreds of thousands of Da can be ionized;
- the most frequently observed ions $[M+H]^+$, $[M+2H]^{2+}$, sometimes also $[M+3H]^{3+}$, $[M+Na]^+$, etc.

PRINCIPAL ARTICLES ON THE MALDI PRINCIPLE

• Michael Karas, Doris Bachmann and Franz Hillenkamp, Anal. Chem. 1985, 57, 2935-2939

Ronald C. Bavis and Brian Chait,
 Rapid Com. In Mass Spectr. Vol.3, No. 7, 1989

• Michael Karas, Matthias Glückmann and Jürgen Schäfer, J. Mass Spectr. 35, 1-12, (2000)

Renato Zenobi and Richard Knochenmuss, Mass Spectrometry Reviews, 1998, 17, 337.366

9

MALDI ANALYSIS PROCEDURE:

- 1.) Mixing the sample with the matrix in a suitable ratio (it is also possible separately);
- 2.) Applying a sub μl aliquot of the mixture to the target plate;
- 3.) Solvent evaporation and co-crystallization;
- 4.) Placing the target plate in the spectrometer;
- 5.) Application of laser pulse and ion generation;
- 6.) Ion analysis and data collection;

11

THE MOST COMMON TYPES OF LASERS:

Nitrogen laser:

pro: well structured energy profile
contra: slow (maximum 50Hz)

Nd:YAG laser:

pro: fast (up to 1000Hz)

contra: Gaussian energy profile (non-structured)

Smartbeam/Smartbeam II (modified Nd:YAG laser):

pro: fast (up to 1000Hz)

pro: well structured energy profile

THE MOST COMMON TYPES OF MATRIX:

- MALDI matrix requirements:
- · Absorption at the wavelength of the laser used;
- - Appropriate crystallization;
- - For positive acid ionization (increased concentration of protons);
- - Stable, non-reactive with analyte, not very volatile;

13

THE MOST COMMON TYPES OF MATRIX:

• Peptides: 4-Hydroxy-a-cyanocinnamic acid (HCCA)

• **Proteins:** 3,5-Dimethoxy-4-hydroxycinnamic (Sinapinic) acid (**SA**)

2,5-Dihydroxy benzoic acid (**DHB**)

Dihydroxyacetophenone (DHAP)

• Glycans: DHB

• Nucleic acids: 3-Hydroxypicolinic acid (HPA)

Trihydroxyacetophenone (THAP)

1,8-Bis(dimethylamino)naphthalene (Proton Sponge)

HO CH₃

HO OCH₃

H

THE MOST COMMON TYPES OF MATRIX FOR NEGATE IONS

• 9-AMINOACRIDINE

1,5-Diaminonaphthalene

Anthranilamide

15

THERMOSPRAY(TSI)

- designed for HPLC/MS connection;
- very gentle ionization technique (fragment ions are absent);
- the pressure in the ion source for TSI is higher than EI, but not API
- common mobile phases and flow rates (up to 1 ml/min);
- for RP-HPLC the necessary addition of electrolyte (ammonium acetate);
- the water content of the mobile phase must be at least 10%;

- a) the metal capillary is heated to a temperature of T = 150 300C, a supersonic stream;
- b) small droplets carry an electrostatic charge on their surface, density of which gradually increases with further evaporation of the solvent;
- c) Coulombic explosion;
- d) the process of Coulombic explosions and evaporation is repeated "ion evaporation".

17

TSI

- 1/ output from HPLC;
- 2/ heated capillary;
- 3/ heated block;
- 4/ discharge electrode (or source of accelerated e-);
- 5/ repulsion electrode;
- 6/ vacuum pumps;
- the temperature of the heated capillary depends on the flow rate of the mobile phase and the solvents used;
- in general, TSI is not very suitable for low-polar substances;

ATMOSPHERIC PRESSURE IONIZATION (API)

- a complete breakthrough in solving the HPLC/MS connection.
- an analytical technique of great importance for the structural analysis;
- identification of reaction products and impurities, trace analysis and, new possibilities in the field of biochemistry;
- even electrons ions EE are formed almost exclusively !!!
- Formation of molecular adducts (mainly ESI): [M+H]⁺, [M+Na]⁺, [M+K]⁺, [M-H]⁻, [M+CI]⁻, sometimes also adducts with a mobile phase molecule of the type [M+methanol+H]⁺, [M+acetonitril+H]⁺ or molecular adducts [2M+H]⁺, [3M+H]⁺
- Atmospheric photo-ionization (APPI) suitable for compounds with very little polarity (e.g. polyaromatics);

ATMOSPHERIC PRESSURE CHEMICAL IONIZATION (APCI)

- Even electrone ions EE are formed almost exclusively, similar to ESI;
- compared to ESI, the intensity of adducts tends to be lower;
- relatively gentle ionization technique;
- fragment ions can be promoted by collision induced dissociation (CID);
- in-source CID or MS/MS setup;
- the possibility of a higher flow rate ml/min;

23

PRINCIPLE APCI

- output from HPLC (0.2 2 ml/min);
- a high voltage (3-4 kV) is applied to the discharge electrode ("discharge needle"),
- subsequently, the analyte molecules are ionized by ion-molecular reactions of the reaction gas (=ionized molecules of the mobile phase).
- counterflow of drying gas (nitrogen) is used to break up any non-covalent clusters and associates.

ATMOSPHERIC PRESSURE PHOTO-IONIZATION (APPI)

- analogy of APCI, only instead of corona discharge, UV radiation is used for ionization;
- the source of UV radiation is a krypton discharge lamp;
- Unlike ESI and APCI, ions with an odd number of ecan often be formed;
- Use of a dopant (toluene, benzene, IE<10 eV) ion-molecular reactions occur;

25

TYPES OF MASS ANALYZERS

- Part of device which is used to the separation of ions according to m/z
- There are five general types of analyzers according to the different physical principles of ion separation.
- 1/ Magnetic Sector ions of certain m/z have a unique path radius in the magnetic field;
- 2/ Quadrupole different stability of ion oscillations in a two- or threedimensional combination of DC and RF voltages;
- 3/ Time of Flight (TOF) sepatration of ions by time (without the use of an electric or magnetic field);
- 4/ Ion Cyclotron Resonance (ICR) The ions are in the magnetic field trapped into orbit inside. Different absorption of energy occurs during the cycloidal movement of ions;
- 5/ Ion mobility (IMS) separation ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas;

RESOLVING POWER

 a) basic definition of resolving power, RP: the peaks are sufficiently separated when the valley is 10%;

$$RP = m_1 / (m_1 - m_2)$$

 b) alternative definition ratio of the mass to the ∆m (FWHM = full width at half maximum);

$$RP = m / \Delta m$$

Resolution (R) is the inverse of the value of RP; R = 1 / RP

gives the relative difference of two ions that can still be distinguished in ppm;

Mass Analyzers Resolving Mass Power **Accuracy** •Ion Cyclotron 10 000 000 <1ppm (FT-ICR-MS) •Time of Flight 40,000 3-10ppm (TOF) 2-5ppm • Magnetic Sector 100 000 •Quadrupole Ion Trap n/a 1,000 n/a Quadrupole 1,000

MAGNETIC SECTOR

principle: when passing through a magnetic field, the path of ions with a lower m/z value will be more curved; (the paths of heavier ions do not curve as much due to the greater centrifugal force of the heavier ion);

31

PHYSICAL DESCRIPTION

- positive ions with a certain m/z value accelerated by a negative potential
 V enter a magnetic field with a magnetic induction B, resulting in the curvature of the movement of the ions on a trajectory of radius r;
- ions receive kinetic energy: $E_k = z.V = 1/2 \text{ m.v}^2$
- Magnetic field centripetal force (Lorentz) B.z.v must be in balance with centrifugal force m.v²/r
- B.z.v = $m.v^2/r$
- basic equation of Magnetic Sector Mass spectrometer
- $m/z = B^2$. $r^2/2.V$
- · Magnetig or potetntial scanning

DOUBLE FOCUS MASS SPECTROMETER

- in addition to the magnetic focusing of the ions, there is also an electrical (electrostatic) focusing of the ions, resulting in a significant increase in the maximum RP;
- **principle**: in the electric field, the path of the ions will be curved depending on their E_k and regardless of the m/z value;
- to achieve higher resolution, we must energetically unite the ions;

33

PHYSICAL DESCRIPTION

- in an electrical sector, the **centripetal** electric force z.E is in balance with the **centrifugal** force m.v²/r;
- $z.E = m.v^2/r$
- Kinetic energy of ions: $E_k = z.V = 1/2 \text{ m.v}^2$
- the equation for the radius of curvature of the trajectory in the electric field: r = 2.V/E
- focus of ions in el. fields do not depend on the m/z ratio !!!
- It serves to obtain a monoenergetic beam of ions;
- by combining magnetic (B) and electric (E) ion focusing we can achieve RP up to 100000;

LINEAR QUADRUPOLE

- **principle**: the ion is brought to the center of the quadrupole axis and begins to oscillate; only the selected ion will pass through the quadrupole;
- scanning mass filter
- Physical destcription: four metal cylindrically shaped rods 20 30 cm long;
- The pair of opposite rods are held at the same potential +DC, and -DC;
- RF is superimposed on all of them;

The advantages:

i) High transmission; ii) light-weighted and low price; iii) low ion acceleration voltages; iv) high scan speeds

35

LINEAR QUADRUPOLE

Fig. 4.26. Linear quadrupole mass analyzer: (a) schematic and (b) photograph. By courtesy of (a) JEOL, Tokyo and (b) Waters Corp., MS Technologies, Manchester, UK.

rods 2 and 3 rods 1 and 4 +20 -20 to +140 -140 t₁ -20 +20 $\mathbf{t_2}$ -100 +100 t₃ t₄ -20 +20 +140 -140 t₅ -20 +20 (2) 0 t_{o} 500 + **④** 3 + 20 -20 Ion Positions at t

QUADRUPOLE ANALYSER

- hyperbolic shape achieves a higher resolution;
- if we scan e.g. in the range of 1000 m/z, we only have 1/1000 of the total time to detect one m/z value, the rest of the time (i.e. 999/1000 of the time) the ions are captured on the quadrupole rods;
- reducing the mass range, we can increase the detection sensitivity!
- Selected Ion Monitoring, (SIM), can increase sensitivity 1000 times;
- for quantitative and ultra-trace analysis GC/MS a HPLC/MS;

41

THREE-DIMENSIONAL QUADRUPOLE ION TRAP

- Principle:
- The QIT consists of two hyperbolic electrodes serving as end caps along with a ring electrode that replaces two of the linear quadrupole rods;
- ions are pulsed into the trap, where they are captured and gradually ejected onto the detector according to their m/z;
- external ionization (mostly for ESI/APCI) or internal ionization inside the trap (EI/CI);

